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Abstract. Direct CP violation in the hadronic decays B̄0 → π+π−π0 is investigated near the peak of the
ρ0, taking into account the effect of ρ–ω mixing. The branching ratios for the processes B±,0 → ρ±,0π±,0

and B− → ωπ− are calculated as well. We find that the CP violating asymmetry is strongly dependent
on the CKM matrix elements. For a fixed Neff

c , the CP violating asymmetry, aCP , has a maximum of
order −40% to −70% for B̄0 → ρ0(ω)π0 when the invariant mass of the π+π− pair is in the vicinity of
the ω resonance. The sensitivity of the asymmetry to Neff

c is small in that case. Moreover, we find that
in the range of Neff

c which is allowed by the most recent experimental branching ratios from the BABAR,
BELLE and CLEO Collaborations, the sign of sin δ is always positive. Thus, a measurement of direct CP
violation in the decays B̄0 → π+π−π0 would remove the mod (π) ambiguity in the determination of the
CP violating phase angle α.

1 Introduction

In the standard model, CP violating phenomena arise from
a non-zero weak phase angle in a complex matrix allow-
ing flavor violation in the weak interaction: the Cabbibo–
Kobayashi–Maskawa (CKM) matrix. Although the source
of CP violation has not been well understood up to now,
physicists are striving to increase their knowledge of the
mechanism. Many theoretical studies [1,2] (within and be-
yond the standard model) and experimental investigations
have been conducted since the discovery of CP violation
in neutral kaon decays in 1964. According to theoretical
predictions, large CP violating effects may be expected in
B meson decays. In the past few years, several facilities
have started to collect events on B decays and most of
them refer to branching ratios. Generally, the main theo-
retical uncertainties apart from the CKM matrix elements
are the hadronic matrix elements, where non-factorizable
effects are involved. As regards hadronic matrix elements
and non-factorizable effects, a new QCD factorization ap-
proach [3] has been proposed. This QCD factorization ap-
proach includes all radiative diagrams (gluon exchange)
but will not be the subject of this paper. For the CKM
matrix elements, uncertainties in the parameters ρ and η
have been reduced and this allows us to predict the CP
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violating asymmetry in B decays more accurately than
before. This will give us an excellent test for the standard
model and may lead to suggestions of new physics.

Direct CP violating asymmetries in B decays occur
through the interference of at least two amplitudes with
different weak phase φ and strong phase δ. In order to ex-
tract the weak phase (which is determined by the CKM ma-
trix elements), one must know the strong phase δ and this
is usually not well determined. In addition, in order to have
a large signal, we have to appeal to some phenomenologi-
cal mechanism to obtain a large δ. The charge symmetry
violating mixing between ρ0 and ω can be extremely impor-
tant in this regard. In particular, it can lead to a large CP
violation in B decay such as B̄0 → ρ0(ω)π0 → π+π−π0,
because the strong phase passes through 90◦ at the ω res-
onance [4–6].

We have collected all the recent data for b to d tran-
sitions, but we shall focus on the CLEO, BABAR and
BELLE branching ratio results. We also shall use the lat-
est values for the CKM parameters, A, λ, ρ, and η. The
aim of the present work is to constrain the CP violating
calculation in B̄0 → ρ0(ω)π0 → π+π−π0, including ρ–ω
mixing and using the most recent experimental data for the
branching ratios for B → ρπ decays. In order to extract the
strong phase δ, we use the naive factorization approach,
in which the hadronic matrix elements of the operators
are saturated by vacuum intermediate states. Moreover,
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we approximate non-factorizable effects by introducing an
effective number of colors, N eff

c .
In this paper, we investigate five phenomenological

models with different weak form factors and determine the
CP violating asymmetry for B̄0 → ρ0(ω)π0 → π+π−π0 in
these models. We select models which are consistent with
all the latest data and determine the allowed range for N eff

c

(1.09(1.11) < N eff
c < 1.68 (1.80)). Then, we study the sign

of sin δ in this range of N eff
c in all these models. We also

discuss the model dependence of our results in detail.
This paper is structured as follows. In Sect. 2, we in-

troduce the effective Hamiltonian based on the operator
product expansion (OPE) including Wilson coefficients.
We also present the formalism of ρ–ω mixing and its appli-
cation to the CP violating asymmetry in decay processes.
In Sect. 3, the CKM matrix and the relevant form factors
are discussed. In Sect. 4, we present numerical results for
the CP violating asymmetry in B̄0 → π+π−π0 which is
followed by a discussion of these results. In Sect. 5, the
branching ratios for decays such as B±,0 → ρ±,0π±,0 and
B− → ωπ− are investigated. From the CLEO, BABAR
and BELLE experimental data for these branching ratios,
we extract the range of N eff

c allowed in these processes
and the results are also discussed. In the final section, we
summarize our results. Comments on form factors, CKM
matrix parameter values, ρ, η, and conclusions are also
given in this section.

2 CP violation in B̄0 → ρ0π0 → π+π−π0

2.1 Effective theory

In any phenomenological treatment of the weak decays of
hadrons, the starting point is the weak effective Hamilto-
nian at low energy [7] from which the decay amplitude can
be expressed as follows:

A(B → PV )

=
GF√

2
[VubV

∗
ud (C1〈PV |Ou

1 |B〉 + C2〈PV |Ou
2 |B〉)

− VtbV
∗
td

10∑
i=3

Ci〈PV |Oi|B〉
]

+ h.c. , (1)

where 〈PV |Oi|B〉 are the hadronic matrix elements. They
describe the transition between initial and final states with
the operator renormalized at scale µ and include, up to
now, the main uncertainties in the calculation since they
involve non-perturbative effects. GF is the Fermi constant,
VCKM is the CKM matrix element, Ci(µ) are the Wilson
coefficients, and Oi(µ) are the operators from OPE [8].
The operators Oi, the local operators which govern weak
decays, can be written as

Ou
1 = q̄αγµ(1 − γ5)uβ ūβγµ(1 − γ5)bα ,

Ou
2 = q̄γµ(1 − γ5)uūγµ(1 − γ5)b ,

O3 = q̄γµ(1 − γ5)b
∑
q′

q̄′γµ(1 − γ5)q′ ,

O4 = q̄αγµ(1 − γ5)bβ

∑
q′

q̄′
βγµ(1 − γ5)q′

α ,

O5 = q̄γµ(1 − γ5)b
∑
q′

q̄′γµ(1 + γ5)q′ ,

O6 = q̄αγµ(1 − γ5)bβ

∑
q′

q̄′
βγµ(1 + γ5)q′

α ,

O7 =
3
2
q̄γµ(1 − γ5)b

∑
q′

eq′ q̄′γµ(1 + γ5)q′ ,

O8 =
3
2
q̄αγµ(1 − γ5)bβ

∑
q′

eq′ q̄′
βγµ(1 + γ5)q′

α ,

O9 =
3
2
q̄γµ(1 − γ5)b

∑
q′

eq′ q̄′γµ(1 − γ5)q′ ,

O10 =
3
2
q̄αγµ(1 − γ5)bβ

∑
q′

eq′ q̄′
βγµ(1 − γ5)q′

α , (2)

where q′ = u, d, s, c, and eq′ denotes its electric charge. As
regards the Wilson coefficients [9–12], they represent the
physical contributions from scales higher than µ. Since
QCD has the property of asymptotic freedom, they can
be calculated in perturbation theory. Usually, the scale
µ is chosen to be of order O(mb) for B decays and the
Wilson coefficients have been calculated to the next-to-
leading order (NLO). For more details see [13].

2.2 ρ–ω mixing

Let A be the amplitude for the decay B → ρ0π → π+π−π;
then one has

A = 〈ππ−π+|HT|B〉 + 〈ππ−π+|HP|B〉 , (3)

with HT and HP being the Hamiltonians for the tree and
penguin operators. We can define the relative magnitude
and phases between these two contributions as follows:

A = 〈ππ−π+|HT|B〉[1 + reiδeiφ] ,

Ā = 〈π̄π+π−|HT|B̄〉[1 + reiδe−iφ] , (4)

where δ and φ are the strong and weak phases, respec-
tively. The phase φ arises from the appropriate combina-
tion of CKM matrix elements, and, assuming top quark
dominance, φ = arg[(VtbV

�
td)/(VubV

�
ud)]. As a result, sinφ

is equal to sinα, with α defined in the standard way [14].
The parameter r is the absolute value of the ratio of tree
and penguin amplitudes:

r ≡
∣∣∣∣ 〈ρ0π|HP|B〉
〈ρ0π|HT|B〉

∣∣∣∣ . (5)

In order to obtain a large signal for direct CP violation,
we need some mechanism to make both sin δ and r large.
We stress that ρ–ω mixing [15] has the dual advantages
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that the strong phase difference is large (passing through
90◦ at the ω resonance) and well known [5, 6]. With this
mechanism, to first order in isospin violation, we have the
following results when the invariant mass of π+π− is near
the ω resonance mass:

〈ππ−π+|HT|B〉 =
gρ

sρsω
Π̃ρωtω +

gρ

sρ
tρ ,

〈ππ−π+|HP|B〉 =
gρ

sρsω
Π̃ρωpω +

gρ

sρ
pρ . (6)

Here tV (V = ρ or ω) is the tree amplitude and pV the
penguin amplitude for producing a vector meson, V ; gρ

is the coupling for ρ0 → π+π−, Π̃ρω is the effective ρ–ω
mixing amplitude, and sV is from the inverse propagator
of the vector meson V ,

sV = s − m2
V + imV ΓV , (7)

with
√

s being the invariant mass of the π+π− pair. We
stress that the direct coupling ω → π+π− is effectively
absorbed into Π̃ρω [16], leading to the explicit s depen-
dence of Π̃ρω. Making the expansion Π̃ρω(s) = Π̃ρω(m2

ω)+
(s−m2

w)Π̃ ′
ρω(m2

ω), the ρ–ω mixing parameters were deter-
mined in the fit of Gardner and O’Connell [17]: �e Π̃ρω(m2

ω)
= −3500±300 MeV2, �m Π̃ρω(m2

ω) = −300±300 MeV2

and Π̃ ′
ρω(m2

ω) = 0.03 ± 0.04. In practice, the effect of the
derivative term is negligible.

From (3), (4) and (6) one has

reiδeiφ =
Π̃ρωpω + sωpρ

Π̃ρωtω + sωtρ
. (8)

Defining

pω

tρ
≡ r′ei(δq+φ) ,

tω
tρ

≡ αeiδα ,
pρ

pω
≡ βeiδβ , (9)

where δα, δβ , and δq are strong phases (absorptive part).
Substituting (9) into (8), one finds

reiδ = r′eiδq
Π̃ρω + βeiδβ sω

sω + Π̃ρωαeiδα
. (10)

αeiδα , βeiδβ , and r′eiδq will be calculated later. In order
to get the CP violating asymmetry aCP , sinφ and cos φ
are needed, where φ is determined by the CKM matrix
elements. In the Wolfenstein parametrization, the weak
phase comes from [VtbV

�
td/VubV

�
ud] and one has for the de-

cay B → ρ(ω)π,

sin φ =
η√

[ρ(1 − ρ) − η2]2 + η2
,

cos φ =
ρ(1 − ρ) − η2√

[ρ(1 − ρ) − η2]2 + η2
. (11)

The values used for ρ and η will be discussed in Sect. 3.1.
With the decay amplitude given in (1), we are ready to eval-
uate the matrix elements for B±,0 → ρ0(ω)π±,0. In the fac-
torization approximation [18], either ρ0(ω) or π±,0 is gen-
erated by one current which has the appropriate quantum

numbers in the Hamiltonian. For these decay processes,
two kinds of matrix element products are involved after fac-
torization; schematically (i.e. omitting Dirac matrices and
color labels) one has 〈ρ0(ω)|(ūu)|0〉〈π±,0|(ūb)|B±,0〉 and
〈π±,0|(q̄1q2)|0〉〈ρ0(ω)|(ūb)|B±,0〉 with qi (i = 1, 2) = u, d.
We will calculate them in some phenomenological quark
models.

The matrix elements for B → X and B → X� (where
X and X� denote pseudoscalar and vector mesons, respec-
tively) can be decomposed as follows [19],

〈X|Jµ|B〉 =
(

pB + pX − m2
B − m2

X

k2 k

)
µ

F1(k2)

+
m2

B − m2
X

k2 kµF0(k2) , (12)

and

〈X�|Jµ|B〉

=
2

mB + mX�

εµνρσε�νpρ
Bpσ

X�V (k2)

+ i
{

ε�
µ(mB + mX�)A1(k2)

− ε� · k

mB + mX�

(PB + PX�)µA2(k2)

−ε� · k

k2 2mX� · kµA3(k2)
}

+ i
ε� · k

k2 2mX� · kµA0(k2) , (13)

where Jµ(= q̄γµ(1−γ5)b) is the weak current with q = u, d,
k = pB − pX(X�), and εµ is the polarization vector of X�.
F0 and F1 are the form factors related to the transition
0− → 0− and A0, A1, A2, A3 and V are the form factors
which describe the transition 0− → 1−. Finally, in order to
cancel the poles at k2 = 0, the form factors must respect
the constraints

F1(0) = F0(0), A3(0) = A0(0) . (14)

They also satisfy the following relations:

A3(k2) =
mB + mX�

2mX�

A1(k2) − mB − mX�

2mX�

A2(k2).(15)

By using the decomposition in (12) and (13), one obtains
the following tree operator contribution for the process
B̄0 → ρ0(ω)π0:

tρ = mB |pρ|
[(

C ′
1 +

1
N eff

c

C ′
2

)] (
fρF1(m2

ρ)+fπA0(m2
π)

)
,

(16)
where fρ and fπ are the decay constants of ρ and π, re-
spectively, and C ′

i are the Wilson coefficients with values
listed in Table 1. We find tω �= tρ, so that

αeiδα =
−fρF1(m2

ρ) + fπA0(m2
π)

fρF1(m2
ρ) + fπA0(m2

π)
. (17)
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Table 1. Effective Wilson coefficients for the tree operators, electroweak
and QCD penguin operators [11,12]

C′
i q2/m2

b = 0.3 q2/m2
b = 0.5

C′
1 −0.3125 −0.3125

C′
2 +1.1502 +1.1502

C′
3 +2.433 × 10−2 + 1.543 × 10−3i +2.120 × 10−2 + 2.174 × 10−3i

C′
4 −5.808 × 10−2 − 4.628 × 10−3i −4.869 × 10−2 − 1.552 × 10−2i

C′
5 +1.733 × 10−2 + 1.543 × 10−3i +1.420 × 10−2 + 5.174 × 10−3i

C′
6 −6.668 × 10−2 − 4.628 × 10−3i −5.729 × 10−2 − 1.552 × 10−2i

C′
7 −1.435 × 10−4 − 2.963 × 10−5i −8.340 × 10−5 − 9.938 × 10−5i

C′
8 +3.839 × 10−4 +3.839 × 10−4

C′
9 −1.023 × 10−2 − 2.963 × 10−5i −1.017 × 10−2 − 9.938 × 10−5i

C′
10 +1.959 × 10−3 +1.959 × 10−3

After calculating the penguin operator contributions, one
has

r′eiδq (18)

= − pω(
C ′

1 + 1
Neff

c
C ′

2

) (
fρF1(m2

ρ) + fπA0(m2
π)

)
∣∣∣∣ VtbV

�
td

VubV �
ud

∣∣∣∣ ,

and

βeiδβ

=
mB |pρ|

pω

{
−

(
C ′

4 +
1

N eff
c

C ′
3

)
[fρF1(m2

ρ) + fπA0(m2
π)]

− 3
2

[(
C ′

7 +
1

N eff
c

C ′
8

)
−

(
C ′

9 +
1

N eff
c

C ′
10

)]
fπA0(m2

π)

+
3
2

[(
C ′

7 +
1

N eff
c

C ′
8

)
+

(
C ′

9 +
1

N eff
c

C ′
10

)]
fρF1(m2

ρ)

+
[(

C ′
6 +

1
N eff

c

C ′
5

)
− 1

2

(
C ′

8 +
1

N eff
c

C ′
7

)]

×
[

2m2
πfπA0(m2

π)
(md + md)(mb + md)

]

+
1
2

(
C ′

10 +
1

N eff
c

C ′
9

)
[fρF1(m2

ρ) + fπA0(m2
π)]

}
, (19)

where pρ is the c.m. momentum of the decay process.
In (18) and (19), pω is written as

pω = mB |pρ|

×
{

−2
[(

C ′
3 +

1
N eff

c

C ′
4

)
+

(
C ′

5 +
1

N eff
c

C ′
6

)]
fρF1(m2

ρ)

− 1
2

[(
C ′

7 +
1

N eff
c

C ′
8

)
+

(
C ′

9 +
1

N eff
c

C ′
10

)]
fρF1(m2

ρ)

−
[
1
2

(
C ′

8 +
1

N eff
c

C ′
7

)
−

(
C ′

6 +
1

N eff
c

C ′
5

)]

×
[

2m2
πfπA0(m2

π)
(md + md)(mb + md)

]

−
(

C ′
4 +

1
N eff

c

C ′
3

) [
fπA0(m2

π) + fρF1(m2
ρ)

]
(20)

+
1
2

(
C ′

10 +
1

N eff
c

C ′
9

) [
fπA0(m2

π) +
1
2
fρF1(m2

ρ)
]}

,

and the CKM amplitude entering the b → d transition is

∣∣∣∣ VtbV
�
td

VubV �
ud

∣∣∣∣ =

√
(1 − ρ)2 + η2

(1 − λ2/2)
√

ρ2 + η2
=

(
1 − λ2

2

)−1 ∣∣∣∣ sin γ

sin β

∣∣∣∣ ,

(21)
with β and γ defined in the unitarity triangle as usual.

3 Numerical inputs

3.1 CKM values and quark masses

In our numerical calculations we have several parameters:
N eff

c and the CKM matrix elements in the Wolfenstein
parametrization. The CKM matrix, which should be de-
termined from experimental data, is expressed in terms of
the Wolfenstein parameters, A, λ, ρ, and η [20]. Here we
shall use the latest values [21] which have been extracted
from charmless semileptonic B decays (|Vub|), charmed
semileptonic B decays (|Vcb|), s and d mass oscillations
and CP violation in the kaon system (ρ, η):

λ = 0.2237 , A = 0.8113 , 0.190 < ρ < 0.268 ,

0.284 < η < 0.366 . (22)

These values respect the unitarity triangle as well. The
running quark masses are used in order to calculate the
matrix elements of penguin operators. The quark mass is
taken at the scale µ 	 mb in B decays. Therefore one
has [22]

mu(µ = mb) = 2.3 MeV , mb(µ = mb) = 4.9 GeV ,

md(µ = mb) = 4.6 MeV , (23)

which corresponds to ms(µ = 1 GeV) = 140 MeV. As re-
gards the meson masses, we shall use the following val-
ues [14]:

mB0 = 5.279 GeV , mπ± = 0.139 GeV ,
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Table 2. Form factor values for B → ρ and B → π at k2 = 0

hA0 h1 mA0 m1 d0 (d1) b0 (b1)
model (1) 0.280 0.290 5.27 5.32
model (2) 0.340 0.625 5.27 5.32
model (3) 0.280 0.290 5.27 5.32
model (4) 0.340 0.625 5.27 5.32
model (5) 0.372 0.305 1.400 (0.266) 0.437 (−0.752)

mπ0 = 0.135 GeV , mρ0 = 0.769 GeV ,

mω = 0.782 GeV . (24)

3.2 Form factors and decay constants

The form factors Fi(k2) and Aj(k2) depend on the inner
structure of hadrons. In order to gauge the model depen-
dence of the results, we will adopt three different theoret-
ical approaches. The first was proposed by Bauer, Stech,
and Wirbel [19] (BSW model). They used the overlap in-
tegrals of wave functions in order to evaluate the meson–
meson matrix elements of the corresponding current. The
second approach was developed by Guo and Huang (GH
model) [23]. They modified the BSW model by using some
wave functions described in the light-cone framework. The
last model was given by Ball [24,25]. In this case, the form
factors are calculated from QCD sum rules on the light-
cone and leading twist contributions; radiative corrections
and SU(3)-breaking effects are included. The explicit k2

dependence of the form factors is [19,23]

F1(k2) =
h1(

1 − k2

m2
1

)n , A0(k2) =
hA0(

1 − k2

m2
A0

)n ,

and [24–26]

F1(k2) =
h1

1 − d1
k2

m2
B

+ b1

(
k2

m2
B

)2 ,

A0(k2) =
hA0

1 − d0
k2

m2
B

+ b0

(
k2

m2
B

)2 , (25)

where n = 1, 2, and mA0 and m1 are the pole masses as-
sociated with the transition current. h1 and hA0 are the
values of the corresponding form factors at k2 = 0, and
di, bi (i = 0, 1) are parameters in the model of Ball. In
Table 2 we list the relevant form factor values at zero mo-
mentum transfer [19,23–25,27] for the B → π and B → ρ
transitions. The different models are defined as follows:
models (1) and (3) are the BSW models where the q2 de-
pendence of the form factors is described by a single and
a double-pole ansatz, respectively. Models (2) and (4) are
the GH model with the same momentum dependence as
models (1) and (3). Finally, model (5) refers to the Ball
model. We define the decay constants for pseudo-scalar
(fP ) and vector (fV ) mesons as usual by

〈P (q)|q̄1γµγ5q2|0〉 = −ifP qµ ,

√
2〈V (q)|q̄1γµq2|0〉 = fV mV εV , (26)

with qµ being the momentum of the pseudo-scalar meson,
and mV and εV being the mass and polarization vector
of the vector meson, respectively. In our calculations we
take [14]

fπ = 132 MeV , fρ 	 fω = 221 MeV . (27)

In practice the ρ and ω decay constants are very close,
and as a simplification (with little effect on the results),
we chose fρ = fω.

4 Results and discussions

A previous analysis [28] has been conducted showing the
dependence on the CKM matrix elements and form factors
of the direct CP violating asymmetry. Here, we update
our investigation by taking into account the latest values
of the Wolfenstein CKM parameters, ρ and η, and also
by analysing more B decays. In the following numerical
calculations, we apply the formalism detailed previously
and investigate B̄0 → π+π−π0 more precisely. We find that
for a fixed N eff

c there is a maximum value, amax, for the CP
violating parameter, aCP , when the invariant mass of the
π+π− pair is in the vicinity of the ω resonance. In Figs. 1
and 2, CP violating asymmetries for B̄0 → π+π−π0, for
q2/m2

b = 0.3 with N eff
c = 1.09 (1.68), and q2/m2

b = 0.5
with N eff

c = 1.11 (1.80), are plotted, respectively, and for
limiting values of CKM matrix elements. Graphic results
are shown only for the model (1) as an example. We have
investigated five models, with five different form factors in
order to test the model dependence of aCP .

Concerning the maximum CP violating asymmetry for
B̄0 → π+π−π0, amax, it varies from −51% (−38%) to
−84% (−69%) in the allowed range of ρ, η for k2/m2

b = 0.3
(0.5). From the numerical results listed in Table 3, for
N eff

cmin = 1.09 (1.11) and N eff
cmax = 1.68 (1.80), we can see

that the five models fall into two classes: models (1, 3) and
(5) and models (2) and (4). For models (1, 3) and (5), and
for N eff

cmin = 1.09 (1.11), the maximum asymmetry, amax, is
around −54% (−40%) for the set (ρmax, ηmax) and around
−69% (−53.6%) for the set (ρmin, ηmin), leading to the ra-
tio between them being around 1.28 (1.34). In each of these
models and for N eff

cmax = 1.68 (1.80), the maximum value
of the asymmetry, amax, varies from −62.6% (−48.6%) for
the set (ρmax, ηmax) to around −77.3% (−64.6%) for the set
(ρmin, ηmin). In that case, the ratio is equal to 1.23 (1.32).
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Fig. 1. CP violating asymmetry, aCP , for B̄0 → π+π−π0,
for q2/m2

b = 0.3, Neff
c = 1.09 (1.68) and limiting values of the

CKM matrix elements for model (1): solid line (dotted line) for
Neff

c = 1.09 and maximum (minimum) CKM matrix elements.
Dashed line (dot-dashed line) for Neff

c = 1.68 and maximum
(minimum) CKM matrix elements
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Fig. 2. CP violating asymmetry, aCP , for B̄0 → π+π−π0,
for q2/m2

b = 0.5, Neff
c = 1.11 (1.80) and limiting values of the

CKM matrix elements for model (1): solid line (dotted line) for
Neff

c = 1.11 and maximum (minimum) CKM matrix elements.
Dashed line (dot-dashed line) for Neff

c = 1.80 and maximum
(minimum) CKM matrix elements

If we consider models (2) and (4), the maximum asymme-
try, amax, where N eff

cmin = 1.09 (1.11), is around −63.5%
(−48%) for the set (ρmax, ηmax) and around −78.5%
(−62%) for the set (ρmin, ηmin). This yields a ratio 1.24
(1.29). When N eff

cmax = 1.68 (1.80), one has a maximum
asymmetry around −71% (−56.5%) for the set (ρmax, ηmax)
and around −84% (−69%) for the set (ρmin, ηmin), leading
to a ratio around 1.18 (1.22).

From all these results, many comments can be enu-
merated. Although the maximum asymmetry, amax, still
varies over some range in the B̄0 → π+π−π0 decay, we
stress that, by using more accurate CKM element val-

Table 3. Maximum CP violating asymmetry amax (%) for
B̄0 → π+π−π0, for all models, limiting (upper and lower)
values of the CKM matrix elements, and q2/m2

b = 0.3 (0.5)

Neff
cmin = 1.09 (1.11) Neff

cmax = 1.68 (1.80)
model (1)
ρmax, ηmax −55 (−41) −65 (−51)
ρmin, ηmin −72 (−55) −80 (−65)

model (2)
ρmax, ηmax −63 (−48) −71 (−56)
ρmin, ηmin −78 (−62) −84 (−69)

model (3)
ρmax, ηmax −56 (−41) −65 (−51)
ρmin, ηmin −72 (−55) −80 (−69)

model (4)
ρmax, ηmax −64 (−48) −71 (−57)
ρmin, ηmin −79 (−62) −84 (−69)

model (5)
ρmax, ηmax −51 (−38) −58 (−44)
ρmin, ηmin −63 (−51) −72 (−60)

ues than before, a more precise CP violating asymmetry
is obtained. The reason is primarily the matrix elements
Vtd and Vub which are involved in the b → d transition
through the ratio of pω to tρ. In our previous CP violation
study [28] for the process B− → π+π−π−, we found that
the ratio between the maximum and minimum asymmetry,
related to the minimum and maximum set of (ρ, η), was
around 1.6. By comparison, in the present work, this ratio
is reduced to 1.3. The difference is related to the improve-
ment in the measurement of the CKM matrix elements,
and shows the strong effect of the CKM parameters, ρ and
η, on the limiting asymmetry values.

With regard to the CKM matrix elements, it appears
that if we take their upper limit, we obtain a smaller asym-
metry, aCP , and vice versa. As we found before, there is
still a strong dependence of the CP violating asymme-
try on the form factors. The difference between the two
classes of models, (1, 3, 5) and (2, 4), comes mainly from
the magnitudes of the form factors. In fact, the form factor
F1(k2), which describes the transition B → π, is mainly
responsible for this dependence. In both classes, we find
a stronger dependence of the CP violating asymmetry on
the CKM matrix elements than that on the form factors or
the effective parameter N eff

c . The difference observed in our
results between q2/m2

b = 0.3 and q2/m2
b = 0.5 arises from

the q2 dependence of the Wilson coefficients in the weak
effective Hamiltonian. Finally, since N eff

c (treated as a free
parameter) is related to hadronization effects through the
factorization approach, it is not possible to determine its
value accurately (since non-factorizable effects are not well
known). That is why the asymmetry also varies in some
range of N eff

c . It is obvious that a more accurate value for
N eff

c (which requires a more accurate approach with non-
factorizable effects being taken into account), and hadronic
decay form factors (which requires better understanding of
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Fig. 3. sin δ as a function of Neff
c , for B̄0 → π+π−π0, for

q2/m2
b = 0.3 (0.5) and for model (1). The solid (dotted) line at

sin δ = +1 corresponds the case Π̃ρω = (−3500; −300), where
ρ–ω mixing is included. The dot-dashed (dot-dot-dashed) line
corresponds to Π̃ρω = (0; 0), where ρ–ω mixing is not included

the pionic structure and the B → π transition) are needed
in order to determine the CKM matrix elements.

In spite of all the uncertainties mentioned above, we
stress that the ρ–ω mixing mechanism in the B → ρπ
decay can be used to remove the ambiguity concerning
the sign of sin δ. As the internal top quark dominates the
b → d transition, the weak phase in the asymmetry is
proportional to sinα (= sinφ), where α = arg

[
− VtdV �

tb

VudV �
ub

]
.

Hence, knowing the sign of sin δ enables us to determine
that of sinα from a measurement of the asymmetry, aCP .
In Fig. 3 we show sin δ as a function of N eff

c for B̄0 →
π+π−π0 when we have maximum CP violation. Then, in
our determined range of N eff

c (1.09 (1.11) < N eff
c < 1.68

(1.80)) one finds that its sign is always positive for all the
models studied and for all the form factors. Therefore, by
measuring the CP violating asymmetry in B̄0 → π+π−π0,
we can remove the mod(π) ambiguity which appears in the
determination for α from the usual indirect measurements
which yield sin 2α. In Fig. 4, the ratio of the penguin and
tree amplitudes, as a function of N eff

c , is plotted for limiting
values of the CKM matrix elements, ρ, η, for the process
B̄0 → π+π−π0. Even though one gets a larger value of
sin δ around N eff

c = 1, for B̄0 → π+π−π0, without ρ–ω
mixing, one still has a small value for r around this value
of N eff

c . In that case, the CP violating asymmetry, aCP ,
remains very small without ρ–ω mixing.

5 Branching ratios for B±,0 → ρ0π±,0

5.1 Formalism

The direct B → ρ0π transition is the main contribution
to the decay rate. In our case, to be consistent, we should
also take into account the ρ–ω mixing contribution to the
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Fig. 4. The ratio of penguin to tree amplitudes, r, as a func-
tion of Neff

c , for B̄0 → π+π−π0, for q2/m2
b = 0.3 (0.5), for

limiting values of the CKM matrix elements (ρ, η) maximum
(minimum), for Π̃ρω = (−3500; −300) (0, 0), (i.e. with (with-
out) ρ–ω mixing) and for model (1). Figure 4a (left): for
Π̃ρω = (0; 0), solid line (dotted line) for q2/m2

b = 0.3 and
(ρ, η) maximum (minimum). Dot-dashed line (dot-dot-dashed
line) for q2/m2

b = 0.5 and (ρ, η) maximum (minimum). Figure
4b (right): same caption but for Π̃ρω = (−3500; −300)

branching ratio, since we are working to the first order
of isospin violation. The derivation is straightforward and
we obtain the following form for the branching ratio for
B → ρ0π:

BR(B → ρ0π) =
G2

F|pρ|3
αkπΓB

×
∣∣∣∣∣
[
V T

d AT
ρ0(a1, a2) − V P

d AP
ρ0(a3, · · · , a10)

]

+
[
V T

d AT
ω (a1, a2) − V P

d AP
ω(a3, · · · , a10)

]

× Π̃ρω

(sρ − m2
ω) + imωΓω

∣∣∣∣∣
2

. (28)

In (28) GF is the Fermi constant, ΓB is the B total decay
width, and αk is an integer related to the given decay, AT

V
and AP

V are the tree and penguin amplitudes, and V T
d , V P

d
represent the CKM matrix elements involved in the tree
and penguin diagrams, respectively:

V T
d = |VubV

�
ud| , and V P

d = |VtbV
�
td| . (29)

The effective parameters, ai, which are involved in the de-
cay amplitude, are the following combinations of effective
Wilson coefficients:

a2j = C ′
2j +

1
N eff

c

C ′
2j−1,
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a2j−1 = C ′
2j−1 +

1
N eff

c

C ′
2j , for j = 1, · · · , 5 . (30)

5.2 Calculational details

In this section, we give full details of the theoretical decay
amplitudes for decays involving the b to d transition. Two
of these decays involve ρ–ω mixing. They are B− → ρ0π−
and B̄0 → ρ0π0. The other two decays are B̄0 → ρ−π+

and B− → ρ−π0. We list in the following the tree and
penguin amplitudes which appear in the given transitions.

For the decay B− → ρ0π− (αk = 32 in (28))
√

2AT
ρ (a1, a2) = a1fρF1(m2

ρ) + a2fπA0(m2
π) , (31)

√
2AP

ρ (a3, · · · , a10) = fρF1(m2
ρ)

×
{

−a4 +
3
2
(a7 + a9) +

1
2
a10

}

+ fπA0(m2
π)

{
a4 − 2(a6 + a8)

[
m2

π

(mu + md)(mb + mu)

]

+ a10} ; (32)

for the decay B− → ωπ− (αk = 32 in (28)),
√

2AT
ω (a1, a2) = a1fρF1(m2

ρ) + a2fπA0(m2
π) , (33)

√
2AP

ω(a3, · · · , a10) = fρF1(m2
ρ)

×
{

2(a3 + a5) +
1
2
(a7 + a9) +

(
a4 − 1

2
a10

)}

+ fπA0(m2
π)

{
−2(a6 + a8)

[
m2

π

(mu + md)(mb + mu)

]

+ a4 + a10} ; (34)

for the decay B̄0 → ρ0π0 (αk = 64 in (28))

2AT
ρ (a1, a2) = a1fρF1(m2

ρ) + a1fπA0(m2
π) , (35)

2AP
ρ (a3, · · · , a10) = fρF1(m2

ρ)

×
{

−a4 +
1
2
(3a7 + 3a9 + a10)

}

+ fπA0(m2
π)

{
−a4 + (2a6 − a8)

[
m2

π

2md(mb + md)

]

+
1
2
(−3a7 + 3a9 + a10)

}
; (36)

for the decay B̄0 → ωπ0 (αk = 64 in (28)),

2AT
ω (a1, a2) = −a1fρF1(m2

ρ) + a1fπA0(m2
π) , (37)

2AP
ω(a3, · · · , a10) = fρF1(m2

ρ)

×
{

−2(a3 + a5) − a4 − 1
2
(a7 + a9 − a10)

}

+ fπA0(m2
π)

{
−a4 + (2a6 − a8)

[
m2

π

2md(mb + md)

]

+
1
2
(−3a7 + 3a9 + a10)

}
; (38)

for the decay B̄0 → ρ−π+ (αk = 16 in (28))

AT
ρ (a1, a2) = a2fρF1(m2

ρ) , (39)

AP
ρ (a3, · · · , a10) = (a4 + a10)fρF1(m2

ρ) ; (40)

for the decay B− → ρ−π0 (αk = 32 in (28))
√

2AT
ρ (a1, a2) = a2fρF1(m2

ρ) + a1fπA0(m2
π) , (41)

√
2AP

ρ (a3, · · · , a10) = fρF1(m2
ρ)(a4 + a10)

+ fπA0(m2
π)

{
−a4 − 1

2
(3a7 − 3a9 − a10)

+ (2a6 − a8)
[

m2
π

2md(mb + md)

]}
. (42)

Moreover, we can calculate the ratio between two branch-
ing ratios, namely BR(B0 → ρ±π∓) and BR(B± → ρ0π±),
in which the uncertainty caused by many systematic errors
is removed. We define the ratio Rπ by

Rπ =
BR(B0 → ρ±π∓)
BR(B± → ρ0π±)

. (43)

5.3 Numerical results

The numerical values for the CKM matrix elements V T,P
d ,

ρ–ω mixing amplitude Π̃ρω, and particle masses mV,P,
which appear in (28), have been reported in Sects. 2.2
and 3. The Fermi constant is taken to be GF = 1.166391×
10−5 GeV−2 [14], and for the total decay width B meson,
ΓB (= 1/τB), we use the world average B life-time val-
ues (combined results from ALEPH, CDF, DELPHI, L3,
OPAL and SLD) [21]:

τB0 = 1.546 ± 0.021 ps ,

τB+ = 1.647 ± 0.021 ps . (44)

To compare theoretical results with experimental data,
as well as to determine constraints on the effective num-
ber of colors, N eff

c , the form factors and the CKM ma-
trix parameters, we shall use the experimental branch-
ing ratios collected by CLEO [29], BELLE [30–32] and
BABAR [33,34] factories. All the experimental values are
summarized in Table 4.

In order to determine the range of N eff
c , which is allowed

by the experimental data, we have calculated the branch-
ing ratios for B± → ρ0π±, B± → ρ±π0, B0 → ρ±π∓, and
B0 → ρ0π0. All the results are shown in Figs. 5, 6, 7 and 8
for the corresponding branching ratios listed above. Re-
sults are plotted for models (1) and (2), since they involve
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Table 4. The branching ratios measured by CLEO, BABAR and BELLE factories for
B decays into ρπ in unit of 10−6 (see the reference in the text). Experimental data�,
preliminary results�, fit• and upper limit¶

CLEO BABAR BELLE

ρ0π± 10.4+3.3
−3.4 ± 2.1� 24 ± 8 ± 3� (≤ 39)¶ 8.0+2.3+0.7

−2.0−0.7
� (≤ 28.8)¶

ρ±π0 ≤ 43¶ − −
ρ±π∓ 27.6+8.4

−7.4 ± 4.2� 28.9 ± 5.4 ± 4.3� 20.8+6.0+2.8
−6.3−3.1

� (≤ 35.7)¶

ρ0π0 1.6+2.0
−1.4 ± 0.8• (≤ 5.5)¶ ≤ 10.6¶ ≤ 5.3¶

BR(ρ±π∓)
BR(ρ0π±) 2.65 ± 1.9 1.20 ± 0.79 2.60 ± 1.31

ωπ± 11.33.3
−2.9 ± 1.4� 6.62.1

−1.8 ± 0.7� 4.22.0
−1.8 ± 0.5�
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Fig. 5. Branching ratio for B± → ρ0π± for models (1, 2),
q2/m2

b = 0.3 and limiting values of the CKM matrix elements.
Solid line (dotted line) for model (1) and maximum (minimum)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line)
for model (2) and maximum (minimum) CKM matrix elements.
Horizontal dotted lines: CLEO data; horizontal dashed lines:
BABAR data; horizontal dot-dashed lines: BELLE data

different form factor values and thus show their depen-
dence on the form factors. As experimental data, we shall
use three sets of data from the CLEO, BABAR and BELLE
Collaborations, respectively. Since experimental branching
ratios from CLEO are the most accurate, we shall use them
to extract the range of N eff

c . The other two, the BABAR
and BELLE data, will give us an idea of the magnitude of
the experimental uncertainties. It is clear that numerical
results are very sensitive to uncertainties coming from the
experimental data. Thus, the determination of the allowed
range of N eff

c will be done by using all the branching ratio
results.

Let us start with the decay processes B− → ρ0π− and
B− → ρ−π0. In both cases, there is a large range of ac-
ceptable values for N eff

c and the CKM matrix elements
over which the theoretical results are consistent with ex-
perimental data from CLEO, BABAR and BELLE. For
B− → ρ−π0, the lack of data does not allow us to deter-
mine the range. However, experiment and theory are con-
sistent in both cases. For B− → ρ0π−, the models show
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Fig. 6. Branching ratio for B± → ρ±π0 for models (1, 2),
q2/m2

b = 0.3 and limiting values of the CKM matrix elements.
Solid line (dotted line) for model (1) and maximum (minimum)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line)
for model (2) and maximum (minimum) CKM matrix elements.
Same notation for experimental data as in Fig. 5

considerable variation even though they are all consistent
with the experimental data. Numerical results for models
(1, 3) and (5) are close; so are those for models (2) and
(4). We emphasize that the effect of ρ–ω mixing on the
branching ratio B± → ρ0π± can be as large as 30%. As
regards B0 → ρ−π+ and B̄0 → ρ0π0, the results and con-
clusions are different from those for B− → ρ0π−. If we look
at the branching ratio for B0 → ρ±π∓, only models (2)
and (4) are consistent with experimental data over a large
range of N eff

c , whereas models (1, 3) and (5) are not. The
strong sensitivity to the results in that case comes from the
fact that the decay branching ratios for B0 → ρ±π∓ de-
pend on form factors more sensitively, because in this case
only one form factor, F1(k2), is involved. In all the other
cases, the amplitudes depend on both F1(k2) and A0(k2).
Therefore these branching ratios are less sensitive to the
magnitude of the form factors. Finally, for the branching
ratio BR(B± → ωπ±) plotted in Fig. 9, all models give
theoretical results consistent with the experimental data.
Once again, the difference observed between models (1)
and (2) mainly comes from the form factor F1(k2) (i.e.
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Fig. 7. Branching ratio for B0 → ρ±π∓ for models (1, 2),
q2/m2

b = 0.3 and limiting values of the CKM matrix elements.
Solid line (dotted line) for model (1) and maximum (minimum)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line)
for model (2) and maximum (minimum) CKM matrix elements.
Same notation for experimental data as in Fig. 5
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Fig. 8. Branching ratio for B0 → ρ0π0 for models (1, 2),
q2/m2

b = 0.3 and limiting values of the CKM matrix elements.
Solid line (dotted line) for model (1) and maximum (minimum)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line)
for model (2) and maximum (minimum) CKM matrix elements.
Same notation for experimental data as in Fig. 5

from the pion wave function used). Our analysis shows
that models (1, 3) and (5) cannot give results consistent
with all experiments and have to be excluded.

To remove systematic uncertainties coming from the
experimental results, one can calculate the ratio between
two branching ratios for B decays. In the present case (with
the data available), the ratio, Rπ, is between BR(B± →
ρ0π±) and BR(B0 → ρ±π∓). Results are shown in Fig. 10.
We observe that the ratios differ totally from each other
for models (1, 3) and (5) and models (2) and (4). Since
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Fig. 9. Branching ratio for B± → ωπ± for models (1, 2),
q2/m2

b = 0.3 and limiting values of the CKM matrix elements.
Solid line (dotted line) for model (1) and maximum (minimum)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line)
for model (2) and maximum (minimum) CKM matrix elements.
Same notation for experimental data as in Fig. 5
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Fig. 10. The ratio of two ρπ branching ratios versus Neff
c

for models (1, 2) and for limiting values of the CKM matrix
elements: solid line (dotted line) for model (1) with maximum
(minimum) CKM matrix elements. Dot-dashed line (dot-dot-
dashed line) for model (2) with maximum (minimum) CKM
matrix elements. Same notation for experimental data as in
Fig. 5

models (1, 3) and (5) have already been excluded, we will
use models (2) and (4) for the determination of the range
for N eff

c . If we just include tree contributions in the decay
amplitudes, Rπ becomes independent of the CKM matrix
elements. Penguin contributions lead to a relatively weak
dependence of Rπ on the CKM matrix elements. By com-
paring numerical results and experimental data, we are
now able to extract a range for N eff

c which is consistent
with all the results. To determine the best range of N eff

c ,
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Table 5. Best range of Neff
c determined for q2/m2

b = 0.3 (0.5)
and for all B → ρπ decays

B → ρπ
{
Neff

c

}
with mixing

model (2) 1.09; 1.63 (1.12; 1.77)
model (4) 1.10; 1.68 (1.11; 1.80)

maximum range 1.09; 1.68 (1.11; 1.80)
minimum range 1.10; 1.63 (1.12; 1.77)

we select the values of N eff
c which are allowed by all con-

straints for each model. Finally, after excluding models
(1, 3) and (5) for the obvious reasons mentioned before,
we can now fix the upper and the lower limit of the range
of N eff

c (Table 5). We find that N eff
c should be in the range

1.09 (1.11) < N eff
c < 1.68 (1.80) for q2/m2

b = 0.3 (0.5).
Comparing with our previous study, the current range of
N eff

c is consistent but smaller than the previous one.

6 Summary and discussion

The first aim of the present work was to compare the-
oretical branching ratios for B± → ρ0π±, B± → ρ±π0,
B0 → ρ±π∓ and B0 → ρ0π0 with experimental data from
the CLEO, BABAR and BELLE Collaborations. The sec-
ond was to apply recent values of the CKM matrix ele-
ments, e.g. A, λ, η and ρ, to study direct CP violation for
B decay such as B̄0 → ρ0(ω)π0 → π+π−π0, where the
ρ–ω mixing mechanism must be included. The advantage
of including ρ–ω mixing is that the strong phase differ-
ence, which is necessary for direct CP violation, is large
and rapidly varying near the ω resonance. As a result, the
CP violating asymmetry, aCP , reaches a maximum, amax,
when the invariant mass of the π+π− pair is in the vicinity
of the ω resonance and sin δ = +1 at this point.

In our approach, we started from the weak effective
Hamiltonian where short distance and long distance phys-
ics are separated and treated by a perturbative approach
(Wilson coefficients) and a non-perturbative approach (op-
erator product expansion), respectively. One of the main
uncertainties introduced in our calculation comes from the
hadronic matrix elements for both tree and penguin oper-
ators. We treated them by applying a naive factorization
approximation, where N eff

c is taken as an effective parame-
ter. Although this is clearly an approximation, it has been
pointed out [35] that it may be quite reliable in energetic
weak decays such as B → ρπ.

We have investigated the direct CP violating asymme-
try in the B decay B̄0 → π+π−π0. We found that the CP
violation parameter, aCP , is very sensitive to the parame-
ters ρ and η in the CKM matrix, and also to the magnitude
of the form factors appearing in the five phenomenological
models we investigated. We have calculated the maximum
asymmetry, amax, as a function of the effective parameter,
N eff

c , with the limiting values of the CKM matrix elements.
We found that the CP violating asymmetry, amax, can vary
from −37% to −84% over all the models (1, 2, 3, 4, 5). As
we already suggested in a previous study [28], the ratio be-

tween the asymmetries for limiting values of the CKM ma-
trix elements is mainly governed by η. Previously, we found
a ratio equal to 1.64 where the CKM values used were the
following: A = 0.815, λ = 0.2205, 0.09 < ρ < 0.254, and
0.323 < η < 0.442. In the present work, we found for the
same decay, a ratio equal to 1.30. The more accurate value
for η has reduced uncertainties on both the CP violating
asymmetry and the ratio, Γ (B± → ρ0π±)/Γ (B0 → ρ0π0).

Moreover, we stressed that without the ρ–ω mixing
mechanism, the CP violating asymmetry, aCP (which is
proportional to both sin δ and r), is small, since in that
case either sin δ or r is small. In the allowed range of N eff

c ,
we also found that the sign of sin δ is always positive.
Therefore, by measuring aCP , we can remove the phase
mod(π) ambiguity which occurs in the usual method for
the determination of the CKM unitarity angle α.

We have calculated the branching ratios for B± →
ρ0π±, B± → ρ±π0, B0 → ρ±π∓ and B0 → ρ0π0 and
compared the results with experimental data coming from
the CLEO, BABAR and BELLE Collaborations. We have
shown that for models (2) and (4) there is a range for N eff

c ,
1.09 (1.11) < N eff

c < 1.68 (1.80), in which the theoretical
results are consistent with experimental data. Models (1, 3)
and (5) are excluded since the form factor F1(k2) in these
models cannot produce results consistent with experiment.
For a deeper investigation into this problem, some reso-
nant and non-resonant contributions [36, 37] which may
carry bigger effects than expected in the calculation of the
branching ratios in ρπ may have to be considered seriously.

With more accurate CKM matrix elements values, e.g.
ρ and η, we are able to give more precise CP violat-
ing asymmetries, and the main uncertainties remaining
are from the factorization [3] approach and the hadronic
decay form factors. In the future one may hope to use
QCD factorization to replace the effective parameter, N eff

c ,
and hence to provide a more reliable treatment of non-
factorizable effects. With regard to form factors, we have
shown that some models for the B → π transition are not
consistent with the experimental branching ratios. We ex-
pect that our predictions will provide useful guidance for
future investigations in B decays. We look forward to even
more accurate experimental data from our experimental
colleagues in order to further constrain our theoretical re-
sults and, hence, to further advance the determination of
the CKM parameters ρ and η and our understanding of
CP violation within or beyond the standard model.
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